当前位置: > 若方程x^2+(k-1)y^2-3ky+2k=0 表示双曲线,则实数k的取值范围?...
题目
若方程x^2+(k-1)y^2-3ky+2k=0 表示双曲线,则实数k的取值范围?
答案上-8也要挖掉,为什么?

提问时间:2020-07-24

答案
需要配方.
0=x^2+(k-1)y^2-3ky+2k=x^2-(1-k)[y^2+3ky/(1-k)]+2k
=x^2-(1-k){[y+3/2*k/(1-k)]^2+(1-k)[3/2*k/(1-k)]^2+2k
=x^2-(1-k){[y+3/2*k/(1-k)]^2+k(k+8)/[4(1-k)]
故有
x^2-(1-k){[y+3/2*k/(1-k)]^2=k(k+8)/[4(k-1)]
要使为双曲线,必须
1-k>0,且k(k+8)/[4(k-1)]≠0
于是得k
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.