当前位置: > 已知a,b,c为三个正整数,且a+b+c=12,那么以a,b,c为边组成的三角形可以是钝角三角形吗?为什么?...
题目
已知a,b,c为三个正整数,且a+b+c=12,那么以a,b,c为边组成的三角形可以是钝角三角形吗?为什么?

提问时间:2020-07-24

答案
不可以.
不妨设a≤b≤c,则要是钝角三角形必须有
a+b>c …… ①
a²+b²<c² ……②
由于 a+b+c=12 ,代入①式得
a+b > 12-a-b ,推出 a+b>6,即 a+b≥7
∴ a²+b²<c²=(12-a-b)²≤5²=25
而 a²+b²≥(a+b)²/2≥7²/2=49/2
∴ 49/2≤ a²+b² <25
无整数解,所以不会构成钝角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.