当前位置: > 设F是从A到B的一个函数,定义A上的关系R:aRb当且仅当f(a)=f(b),证明:R是A上的等价关系....
题目
设F是从A到B的一个函数,定义A上的关系R:aRb当且仅当f(a)=f(b),证明:R是A上的等价关系.

提问时间:2020-07-24

答案
很显然,R是A上的非空关系,因为恒等关系IA包含于R.
对任意的a∈A,aRa是显然的. 自反性成立.
对任意的a,b∈A,若aRb,则f(a)=f(b),所以bRa. 对称性成立.
对任意的a,b,c∈A,若aRb,bRc,则f(a)=f(b)=f(c),所以aRc. 传递性成立.
所以,R是A上的等价关系.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.