当前位置: > 奇函数f(x)在定义域(-1,1)上是 减函数,又f(1-a)+f(1-a^2)...
题目
奇函数f(x)在定义域(-1,1)上是 减函数,又f(1-a)+f(1-a^2)<0,求实数a的取值范围

提问时间:2020-07-24

答案
首先要考虑定义域,-1<1-a<1,-1<1-a²<1
得0<a<根号2
现在看题目
f(1-a)+f(1-a²)<0
f(1-a)<-f(1-a²)
而f(x)为奇函数
则-f(x)=f(-x)
则-f(1-a²)=f(a²-1)
则f(1-a)<f(a²-1)
由于f(x)在(-1,1)上是减函数
则由上知1-a>a²-1
得a∈(-2,1)
综合定义域,可知a∈(0,1)
那么面对这种问题,我们首先应该考虑定义域的问题 ,因为越是微小的东西
越是容易让人忘记,经常因此疏忽失分,十分划不来
还有,面对这种问题,我们应该见招拆招,首先利用函数的单调性解函数的
不等式是非常常见的,如果将一个函数移过去后发现不能解,那么一定有奇偶
性或者周期性等其他东西帮忙
最后,祝你数学的学习愉快,有问题也可以问我啊~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.