当前位置: > 设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r...
题目
设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r
如题,拜托尽量把格式写的标准一点,感激不尽!

提问时间:2020-07-24

答案
证: 将B按列分块为 B=(b1,...,bs)
因为 AB=0
所以 A(b1,...,bs) = (Ab1,...,Abs)=0
所以 Abi=0, i=1,...,s
即 B 的列向量都是齐次线性方程组 AX=0 的解向量
所以B的列向量组可由 AX=0 的基础解系线性表示
而 AX=0 的基础解系含 n-r(A) = n-r 个向量
所以 r(B) <= n-r.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.