当前位置: > 如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证: (1)F为BD的中点. (2)△DEF为等边...
题目
如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:

(1)F为BD的中点.
(2)△DEF为等边三角形.

提问时间:2020-07-23

答案
(1)证明:∵DC∥AB,AD=BC,∠A=60°,
∴∠ABC=∠A=60°,
又∵BD平分∠ABC,
∴∠ABD=∠CBD=30°,
∵DC∥AB,
∴∠BDC=∠ABD=30°,
∴∠CBD=∠CDB,
∴CB=CD,
∵CF⊥BD,
∴F为BD的中点;
(2)∵DE⊥AB,F为BD的中点,
∴DF=BF=EF,
∵∠ABD=30°,
∴∠BDE=90°-30°=60°,
∴△DEF为等边三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.