题目
过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB .过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB
过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB 过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB
(1)求AB中点的轨迹方程
②证明直线AB与x轴交点为定点
过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB 过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB
(1)求AB中点的轨迹方程
②证明直线AB与x轴交点为定点
提问时间:2020-07-23
答案
引理1:过两条直线l1=0与l2=0交点的任意一条直线l的方程l=0可写为l=λl1+μl2
引理2:过两条圆锥曲线c1=0和c2=0四个交点的任意一条圆锥曲线c=0方程都可写为c=λc1+μc2
在抛物线y^=2px中,设它的一条对顶点张角为直角的弦的方程为l=0,弦的端点与原点连线的方程为y=k1x和y=k2x,其中k1k2=-1,则(y-k1x)(y-k2x)=0可看作一条特殊的圆锥曲线c1=0把抛物线y^=2px看作圆锥曲线c2=0,其中c2=y^2-2px,把方程x*l=0看作一条圆锥曲线c=0则由引理2,c=λc1+μc2,即x*l=λ(y-k1x)(y-k2x)+μ(y^2-2px),则方程左边能被x整除,右边也必须能被x整除.令λ=-1,μ=1即可满足要求.化简得x*l=(k1+k2)xy-k1k2x^2-2px=0,即l=-k1k2x+(k1+k2)y-2p,注意到k1k2=-1,l=x+(k1+k2)y-2p,或写为l=(x-2p)+(k1+k2)y,即弦的方程为(x-2p)+(k1+k2)y=0,由引理1它经过直线x-2p=0与直线y=0的交点,即点(2p,0)
设这条弦的中点为M,由弦过定点(2p,0),故它的方程可写为y=k(x-2p),由抛物线弦中点的性质k*yM=p,同时弦的中点坐标必须满足yM=k(xM-2p),消去k可得y^2=p(x-2p),即为弦的中点轨迹.
引理2:过两条圆锥曲线c1=0和c2=0四个交点的任意一条圆锥曲线c=0方程都可写为c=λc1+μc2
在抛物线y^=2px中,设它的一条对顶点张角为直角的弦的方程为l=0,弦的端点与原点连线的方程为y=k1x和y=k2x,其中k1k2=-1,则(y-k1x)(y-k2x)=0可看作一条特殊的圆锥曲线c1=0把抛物线y^=2px看作圆锥曲线c2=0,其中c2=y^2-2px,把方程x*l=0看作一条圆锥曲线c=0则由引理2,c=λc1+μc2,即x*l=λ(y-k1x)(y-k2x)+μ(y^2-2px),则方程左边能被x整除,右边也必须能被x整除.令λ=-1,μ=1即可满足要求.化简得x*l=(k1+k2)xy-k1k2x^2-2px=0,即l=-k1k2x+(k1+k2)y-2p,注意到k1k2=-1,l=x+(k1+k2)y-2p,或写为l=(x-2p)+(k1+k2)y,即弦的方程为(x-2p)+(k1+k2)y=0,由引理1它经过直线x-2p=0与直线y=0的交点,即点(2p,0)
设这条弦的中点为M,由弦过定点(2p,0),故它的方程可写为y=k(x-2p),由抛物线弦中点的性质k*yM=p,同时弦的中点坐标必须满足yM=k(xM-2p),消去k可得y^2=p(x-2p),即为弦的中点轨迹.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1或异二者之为 不可或缺 的或分别是什么意思
- 2简便计算1/2*1/3+1/3*1/4+.+1/8*1/9
- 3碱石灰是cao与naoh的固体混合物;加热条件下,纯碱稳定不分解,小苏打�
- 4常用来比喻没人过问,受到冷落的成语是什么?
- 5just to do 和 only to do
- 6如果前4个人的平均年龄是18岁.4个人中没有小于14岁的,那么年龄最大的可能是多少岁?
- 7简便计算(1×2×3+2×4×6+3×6×9+.+100×200×300)÷(2×3×4+4×6×8+6×9×12+.+200×300×400)
- 8加热条件下,1molCl2与足量铁粉充分反应,转移的电子数怎么算?
- 9求小学三年级数学简便计算题10题.谢谢!
- 10最好是八年级上学期第一至三章的题,越难越好,最好附有答案