当前位置: > 已知正数数列an的前n项和为sn,满足sn^2=a1^3+.an^3.(1)求证an为等差数列,并求出通项公式...
题目
已知正数数列an的前n项和为sn,满足sn^2=a1^3+.an^3.(1)求证an为等差数列,并求出通项公式
(2)设bn=(1-1/an)^2-a(1-1/an),若bn+1>bn对任意n属于N*恒成立,求实数a的取值范围

提问时间:2020-07-23

答案
1、∵Sn^2=a1^3+a2^3+…+an^3,
∴Sn-1^2=a1^3+a2^3+…+a(n-1)^3,
两式相减,得an^3=Sn^2-S(n-1)^2=(Sn-S(n-1)))(Sn+S(n-1)))=an(Sn+S(n-1)),
∵an>0,∴an^2=Sn+S(n-1)(n≥2),
∴a(n-1 )^2=S(n-1)+S(n-2()n≥2),
两式相减,得an2-an-12 =Sn-S(n-2)=an+a(n-1),
∴an-a(n-1)=1(n>3),
∵S1^2=a1^2=a1^3,且a1>0,∴a1=1,
S2^2=(a1+a2)^2=a1^3+a2^3,
∴(1+a2)^2=1+a2^3,∴a2^3-a2^2-2a2=0,
由a2>0,得a2=2,
∴an-a(n-1)=1,n≥2,
故数列{an}为等差数列,通项公式为an=n.
2、bn=(1-1/n)^2-a(1-1/n)^2=1/n^2+(a-2)/n+1-a,
b(n+1)-bn=(1/(n+1)-1/n)(1/(n+1)+1/n+a-2)=-[1/n(n+1)][1/(n+1)+1/n+a-2]>0
即1/(n+1)+1/n+a-2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.