当前位置: > 从1到100的自然数中,每次取出两个不同的自然数相加,使它们的和小于100,那么共有多少种不同的取法?...
题目
从1到100的自然数中,每次取出两个不同的自然数相加,使它们的和小于100,那么共有多少种不同的取法?

提问时间:2020-07-22

答案
∵1+98<100,1+97<100,…1+2<100,共有97种;
2+97<100,2+96<100,…2+3<100,共有95种;
3+96<100,3+95<100,…3+4<100,共有93种;

48+51<100,48+50<100,48+49<100,共有3种;
49+50<100,共1种,
于是1+3+5+…+97=49×49=2401(种).
∴符合题意的取法共有2401种.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.