当前位置: > 求不定积分:secx的5次方...
题目
求不定积分:secx的5次方

提问时间:2020-07-21

答案
首先求∫sec^3(x) dx:记I=∫sec^3(x) dx,则I
=∫sec(x)*sec^2(x) dx
=∫sec(x)*[tan(x)]' dx
=sec(x)*tan(x)-∫[sec(x)]'*tan(x) dx
=sec(x)*tan(x)-∫[sec(x)*tan(x)]*tan(x) dx
=sec(x)*tan(x)-∫sec(x)*tan^2(x) dx
=sec(x)*tan(x)-∫sec(x)*[sec^2(x)-1] dx
=sec(x)*tan(x)-∫sec^3(x) dx+∫sec(x) dx
=sec(x)*tan(x)-I+ln|sec(x)+tan(x)|+C,
所以2I=sec(x)*tan(x)+ln|sec(x)+tan(x)|+C,
I=sec(x)*tan(x)/2+ln|sec(x)+tan(x)|/2+C,C为任意常数
然后求∫sec^5(x) dx:记J=∫sec^5(x) dx,则J
=∫sec^3(x)*sec^2(x) dx
=∫sec^3(x)*[tan(x)]' dx
=sec^3(x)*tan(x)-∫[sec^3(x)]'*tan(x) dx
=sec^3(x)*tan(x)-∫3sec^2(x)*[sec(x)*tan(x)]*tan(x) dx
=sec^3(x)*tan(x)-3∫sec^3(x)*tan^2(x) dx
=sec^3(x)*tan(x)-3∫sec^3(x)*[sec^2(x)-1] dx
=sec^3(x)*tan(x)-3∫sec^5(x) dx+3∫sec^3(x) dx
=sec^3(x)*tan(x)-3J+3I,
所以4J=sec^3(x)*tan(x)+3I,
J=sec^3(x)*tan(x)/4+3I/4
=sec^3(x)*tan(x)/4+3sec(x)*tan(x)/8+3ln|sec(x)+tan(x)|/8+C,
C为任意常数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.