当前位置: > a,b,c为实数,ac<0,且(根号2)×a+(根号3)×b+(根号5)×c=0,证明一元二次方程ax^2+bx+c=0有大于(根号3/5)而小于1的根....
题目
a,b,c为实数,ac<0,且(根号2)×a+(根号3)×b+(根号5)×c=0,证明一元二次方程ax^2+bx+c=0有大于(根号3/5)而小于1的根.

提问时间:2020-07-21

答案
(√2)×a+(√3)×b+(√5)×c=0
(√2/5)×a+(√3/5)×b+c=0
令f(x)=ax^2+bx+c
f(√3/5)=3/5*a+√3/5*b+c=(3/5-√2/5)*a
3/5=√9/250
且3/5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.