当前位置: > 证明:对任意正整数n,不等式ln((n+2)/2)...
题目
证明:对任意正整数n,不等式ln((n+2)/2)

提问时间:2020-07-21

答案
用数学归纳法证明:当n=1时,ln((1+2)/2)=ln(3/2)=1)不等式成立,即ln((k+2)/2)={[(k+2)/(k+1)]^(k+1)}^[1/(k+1)]=(k+2)/(k+1)=1+1/(k+1)>1+1/(k+2)
=(k+3)/(k+2)
所以当n=k+1(k>=1)时,(k+3)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.