题目
求不定积分:∫ cosx/(sinx+cosx) dx
提问时间:2020-07-19
答案
∫cosx/(sinx+cosx) dx
= (1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)] dx
= (1/2)∫ dx + (1/2)∫(cosx-sinx)/(sinx+cosx) dx
= x/2 + (1/2)∫d(sinx+cosx)/(sinx+cosx)
= (1/2)(x+ln|sinx+cosx|) + C
参考:
A=∫cosx/(sinx+cosx)dx
B=∫sinx/(sinx+cosx)dx
A+B=∫(cosx+sinx)/(sinx+cosx)dx =∫dx =x+c (1)
A-B=∫(cosx-sinx)/(sinx+cosx)dx =∫(d(cosx+sinx)/(sinx+cosx)=ln(cosx+sinx)+c (2)
[(1)+(2)]/2得:
A=∫cosx/(sinx+cosx)dx =x/2+1/2*ln(cosx+sinx)+c
= (1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)] dx
= (1/2)∫ dx + (1/2)∫(cosx-sinx)/(sinx+cosx) dx
= x/2 + (1/2)∫d(sinx+cosx)/(sinx+cosx)
= (1/2)(x+ln|sinx+cosx|) + C
参考:
A=∫cosx/(sinx+cosx)dx
B=∫sinx/(sinx+cosx)dx
A+B=∫(cosx+sinx)/(sinx+cosx)dx =∫dx =x+c (1)
A-B=∫(cosx-sinx)/(sinx+cosx)dx =∫(d(cosx+sinx)/(sinx+cosx)=ln(cosx+sinx)+c (2)
[(1)+(2)]/2得:
A=∫cosx/(sinx+cosx)dx =x/2+1/2*ln(cosx+sinx)+c
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1翻译the singer dream of earning a place in the top_ten list on the radio
- 2上面一个均下面一个金念什么
- 3关于林冲的四字词语
- 4数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负. (1)求数列的公差; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值.
- 5有两个灯泡L1和L2,L1标出110V 10W,L2标出220V 20W.现将它们串联接入380V的电路中
- 6I will perplex very much if you are always like this
- 7Then Mike gives some money to Peter对some money提问
- 8引黄入晋工程是引黄河中游水到什么河上游?
- 9are you talk with me in english ,ok 翻译中文意思
- 10半径为R的半圆卷成一个圆锥,则它的体积为 _ .
热门考点