当前位置: > 求证:a^3+ab^2+4a+b^3+a^2b+2b-3a^2-b^2-2ab-2 不等于0...
题目
求证:a^3+ab^2+4a+b^3+a^2b+2b-3a^2-b^2-2ab-2 不等于0

提问时间:2020-07-18

答案
证明:a+b不=1.
反证法.
如果a+b=1,则b=1-a
则a^3+ab^2+4a+b^3+a^2b+2b-3a^2-b^2-2ab-2=a^3+a(1-a)^2+4a+(1-a)^3+a^2(1-a)+2(1-a)-3a^2-(1-a)^2-2a(1-a)-2=0,与原条件矛盾
所以a+b不等于1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.