当前位置: > 三角形的各边中线平分的三角形面积相等,比例为2:1,如何证明求大神帮助...
题目
三角形的各边中线平分的三角形面积相等,比例为2:1,如何证明求大神帮助

提问时间:2020-07-18

答案
等底等高的三角形面积相等.中线把对边分为相等的两部分.若原三角形的面积为S1=1/2ah则分开后的三角形的面积为S2=1/2a*1/2h S1:S2=1:2 即:三角形的各边中线平分的三角形面积相等,比例为2:1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.