题目
一道椭圆方程题
一直圆O1:(x+3)^2+y^2=9.圆2:(x-3)^2+y^2=81,动圆M与圆O1外切,与圆O2内切,求动圆圆心M所在的曲线方程
一直圆O1:(x+3)^2+y^2=9.圆2:(x-3)^2+y^2=81,动圆M与圆O1外切,与圆O2内切,求动圆圆心M所在的曲线方程
提问时间:2020-07-18
答案
MO1=R+3,MO2=9-R ,MO1+MO2=12=2a,a=6 c=3
所以M的轨迹 是以(-3,0)(3,0)为焦点 的椭圆
标准方程为x^2/36+y^2/27=1(x≠+-6)
所以M的轨迹 是以(-3,0)(3,0)为焦点 的椭圆
标准方程为x^2/36+y^2/27=1(x≠+-6)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点