当前位置: > 如果非空集合S是(1,2,3,4,5)的子集,且a∈s,必有6-a∈s,则所有满足以上条件的集合S共有多少个...
题目
如果非空集合S是(1,2,3,4,5)的子集,且a∈s,必有6-a∈s,则所有满足以上条件的集合S共有多少个
知道为什么是7个的帮忙讲讲

提问时间:2020-07-18

答案
a∈s,必有6-a∈s 则a与6-a必须成对出现 并且看出3和6-3是同一个数,就把1和5看做一对,2和4看做一对,3单独为一对
这样的话,7个集合分别为
{1,5}
{2,4}
{3}
{1,3,5}
{2,3,4}
{1,2,4,5}
{1,2,3,4,5}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.