当前位置: > 过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程....
题目
过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.

提问时间:2020-07-18

答案
设所求直线与已知直线l1,l2分别交于A、B两点.
∵点B在直线l2:2x+y-8=0上,
故可设B(t,8-2t).又M(0,1)是AB的中点,
由中点坐标公式得A(-t,2t-6).
∵A点在直线l1:x-3y+10=0上,
∴(-t)-3(2t-6)+10=0,解得t=4.
∴B(4,0),A(-4,2),
故所求直线方程为:x+4y-4=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.