当前位置: > 求证:双曲线x^2-y^2=a^2上任意一点P到两焦点的距离的积等于P到这双曲线中心的距离的平方(a>0)...
题目
求证:双曲线x^2-y^2=a^2上任意一点P到两焦点的距离的积等于P到这双曲线中心的距离的平方(a>0)

提问时间:2020-07-18

答案
设P点坐标为(x,y)
则P到原点的距离为 √(x^2-y^2)=√(2x^2-a^2)
所以P到原点的距离的平方为2x^2-a^2
化简该双曲线方程,得:x^2/a^2-y^2/a^2=1
根据双曲线的交半径公式,两交半径的乘积为
(ex-a)(ex+a)=(ex)^2-a^2
因为c^2=a^2+a^2=2a^2,所以c=(√2)a
e=c/a=√2
所以两交半径乘积为2x^2-a^2
所以P到原点的距离=两交半径的乘积(得证)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.