题目
已知圆的方程是x^2+y^2=1,求:(1)斜率等于1的切线方程;(2)在y轴上截距是2^1/2的切线方程.
提问时间:2020-07-18
答案
1.上半圆y= [1-x^2]^(1/2),y’=-x/[1-x^2]^(-1/2)=1
则x=-2^(1/2)/2,y=2^(1/2)/2,切线方程为:y-2^(1/2)/2=x+2^(1/2)/2,即y=x+2^(1/2)
下半圆y= - [1-x^2]^(1/2),y’=--x/[1-x^2]^(-1/2)=1
则x=2^(1/2)/2,y= -2^(1/2)/2,切线方程为:y+2^(1/2)/2=x-2^(1/2)/2,即y=x-2^(1/2)
2. 在y轴上截距是2^(1/2)的切线,即过点P(0,2^(1/2)),原点与切点,P点构成一个直角三角形,且已知其中两条边长度,一条长2^(1/2),一条长为半径1,另一条直角边也为1,则该切线与y轴正方向的夹角为pi/4,则斜率为1或-1,即
斜率为1的切线方程为:y=x+2^(1/2);
斜率为-1的斜线方程为:y=-x+2^(1/2)
则x=-2^(1/2)/2,y=2^(1/2)/2,切线方程为:y-2^(1/2)/2=x+2^(1/2)/2,即y=x+2^(1/2)
下半圆y= - [1-x^2]^(1/2),y’=--x/[1-x^2]^(-1/2)=1
则x=2^(1/2)/2,y= -2^(1/2)/2,切线方程为:y+2^(1/2)/2=x-2^(1/2)/2,即y=x-2^(1/2)
2. 在y轴上截距是2^(1/2)的切线,即过点P(0,2^(1/2)),原点与切点,P点构成一个直角三角形,且已知其中两条边长度,一条长2^(1/2),一条长为半径1,另一条直角边也为1,则该切线与y轴正方向的夹角为pi/4,则斜率为1或-1,即
斜率为1的切线方程为:y=x+2^(1/2);
斜率为-1的斜线方程为:y=-x+2^(1/2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1:写一句蕴涵人生哲理的名言警句.(急)
- 2眼因多流泪水而愈益清明,心因饱经忧患而愈益温厚.这句话是在中学的那篇文章里的?
- 3仿写“捡起一朵落花,拾一片落叶,捧起一块石头.”
- 4一又三分之二 二又七分之一 二又九分之二分别乘同一个分数,积都是整数.
- 5甲乙两队加工一批零件,如果只有甲队单独做,15小时完成:如果只有乙队单独做,10小时完成.请问两队合作,多少小时可以完成?
- 61.He studies for a test doing a lot of exercise.
- 7会的文言意是什么?
- 85x的2次方·x的7次方=?
- 952的因数有哪些
- 10Jim wants to i() his good friends to his birthday party.
热门考点