当前位置: > 应用二重积分,求在xy平面上由y=x^2与y=4x-X^2所围成区域的面积....
题目
应用二重积分,求在xy平面上由y=x^2与y=4x-X^2所围成区域的面积.

提问时间:2020-07-18

答案
目测这个题目还用不到2重积分
1,求两个相交点横坐标
联立两个,可以得到 x^2 = 4x-x^2
得到x=0,x=2
则可以求 y = x^2 ,0-2的积分
积分函数为1/3 * x^3 则计算积分为 8/3
4x- x^2 ,0-2的积分
积分函数为2x^2 - 1/3 * x^3
则计算积分为16/3
则最后的面积 = 16/3 - 8/3 = 8/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.