当前位置: > 设椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2,已知点A(0,3/2)到这个椭圆上的点的最远距离为根号15...
题目
设椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2,已知点A(0,3/2)到这个椭圆上的点的最远距离为根号15
求这个椭圆的方程

提问时间:2020-07-17

答案
e=根号3除以2
c=√3/2*a,b^2=a^2-c^2=a^2-3a^2/4=a^2/4
长轴在x轴上,所以,可设椭圆方程为:x^2/a^2+4y^2/a^2=1
椭圆上的点(asinr,acosr/2)到p的距离平方
=a^2sin^2r+(acosr-3)^2/4
=-1/4*(3a^2cos^2r+6acosr-9-4a^2)
=-[3(acosr+1)^2-12-4a^2]/4
所以,acosr+1=0时,距离平方最远=(12+4a^2)/4=3+a^2
3+a^2=15
a^2=12
椭圆方程为:x^2/12+y^2/3=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.