当前位置: > 已知函数f(x)=ax*3+cx+d(a不等于0)是R上的奇函数,当x=1时f(x)取的极值-2....
题目
已知函数f(x)=ax*3+cx+d(a不等于0)是R上的奇函数,当x=1时f(x)取的极值-2.
(1)求函数f(x)的解析式
(2)当x属于[-3,3]时,f(x)

提问时间:2020-07-17

答案
因为为奇函数,所以f(0)=0,则d=0,f'(x)=3ax^2+c,又因为,当x=1时f(x)取的极值-2,f'(1)=3a+c=0
f(1)=a+c=-2.得:a=1,c=-3.则f(x)=x^3-3x
f'(x)=3x^2-3=0,x=1或x=-1,所以当[-3,-1]时,f'(x)>0,所以为增函数
当[-1,1]时,f'(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.