当前位置: > 用数学归纳法证明:1+1/2+1/3+……+1/2^n>(n+2)/2 (n>=2,正整数)...
题目
用数学归纳法证明:1+1/2+1/3+……+1/2^n>(n+2)/2 (n>=2,正整数)

提问时间:2020-07-17

答案
证明:
(1)当n=2时,
左边=1 + 1/2 + 1/3 + 1/4 = 25/12
右边= (2+2)/2 = 2 = 24/12
所以左边>右边成立,即n=2时命题成立.
(2)假设当n=k (k>=2时)命题成立,
即1+1/2+1/3+...+1/2^k > (k+2)/2
则当n=k+1时,
左边 = 1+1/2+1/3+...+1/2^k + 1/(2^k + 1) + ...+ 1/2^(k+1)
> (k+2)/2 + 1/2^(k+1) + 1/2^(k+1) + ...+ 1/2^(k+1)
= (k+2)/2 + 2^k / 2^(k+1)
= (k+2)/2 + 1/2
= (k+1 +2)/2
即n=k+1时也成立.
由(1)(2)可得原命题成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.