当前位置: > 设导数f(x)=根号(x^2+1)-ax,其中a≥1.证明:f(x)在区间[0,+∞)上是单调递减函数....
题目
设导数f(x)=根号(x^2+1)-ax,其中a≥1.证明:f(x)在区间[0,+∞)上是单调递减函数.

提问时间:2020-07-17

答案
题目中的函数是符合函数,所以求导的时候要注意复合函数的求导,内外都要 即得出F’(X)=2* 1/2 *(x^2+1) -1/2 –a 整理之后就是F’(X)=1/ √(x^2+1) -a 要知道√(x^2+1)>=1,所以1/ √(x^2+1)=1 所以导函数F’(X)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.