题目
设f(x)连续,d/dx∫上标x下标0tf(x^2-t^2)dt=?
提问时间:2020-07-16
答案
找你这道题找得我好辛苦啊!
解法一:换元法!
令u=x∧2-t∧2,则t=√(x∧2-u)
当t=0时,u=x∧2,当t=x时,u=0.
且dt=(-1)/2√(x∧2-u)
∴原式=∫f(u)*√(x∧2-u)*(-1)/2√(x∧2-u)du=-1/2∫f(u)du(上限0下限x∧2)=1/2∫f(u)du(上限x∧2下限0)
=1/2f(x∧2)*2x
=x*f(x∧2).
解法二:
令u∧2=x∧2-t∧2
则2udu=-2tdt,∴dt=-u/tdu,当t=0时,u=x,当t=x时,u=0
∴原式=∫t*f(u∧2)*(-u)/tdu
=∫f(u∧2)*(-u)du(上限0下限x)
=∫u*f(u∧2)du(上限x下限0)
=x*f(x∧2).
解法一:换元法!
令u=x∧2-t∧2,则t=√(x∧2-u)
当t=0时,u=x∧2,当t=x时,u=0.
且dt=(-1)/2√(x∧2-u)
∴原式=∫f(u)*√(x∧2-u)*(-1)/2√(x∧2-u)du=-1/2∫f(u)du(上限0下限x∧2)=1/2∫f(u)du(上限x∧2下限0)
=1/2f(x∧2)*2x
=x*f(x∧2).
解法二:
令u∧2=x∧2-t∧2
则2udu=-2tdt,∴dt=-u/tdu,当t=0时,u=x,当t=x时,u=0
∴原式=∫t*f(u∧2)*(-u)/tdu
=∫f(u∧2)*(-u)du(上限0下限x)
=∫u*f(u∧2)du(上限x下限0)
=x*f(x∧2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点