当前位置: > 判别一个【级数】的收敛性...
题目
判别一个【级数】的收敛性
Un=2n+1除上(n+1)^2*(n+2)^2
这个通项的级数 怎么判别其收敛性呢

提问时间:2020-07-16

答案
判断级数是否收敛,首先判断通项是否收敛,但这是必要条件,也就是说通项不收敛,级数一定不收敛,通项收敛但级数不一定收敛.所以先判断通项是否收敛.判断通项是否收敛,一眼就可以看出通项是收敛的,那么只好求级数是否收敛了.可以将通项拆为如下形式,然后逐项相加.
原式=(an+b)/(n+1)²-(cn+d)/(n²+2)²,与原式比较可以求得a、b、c、d,然后从n=1开始逐项相加求级数,发现分式项会前后抵消,但系数项认为n表达式,说明级数是发散.
过程不好写,这里就不写了,自己写写看.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.