当前位置: > P为双曲线x方/16-y方/9=1上异于顶点的任意一点,F1F2是双曲线的两焦点,求△PF1F2重心的轨迹方程...
题目
P为双曲线x方/16-y方/9=1上异于顶点的任意一点,F1F2是双曲线的两焦点,求△PF1F2重心的轨迹方程

提问时间:2020-07-16

答案
根据已知得 a^2=16,b^2=9 ,因此 c^2=a^2+b^2=25 ,
所以 F1(-5,0),F2(5,0),设重心 G(x,y),
则由 3G=P+F1+F2 得 P 坐标为(3x,3y),
又由于 P 在双曲线上,所以 (3x)^2/16-(3y)^2/9=1 ,
化简得 x^2/(16/9)-y^2=1 ,由于 P 异于顶点,因此 y ≠ 0 ,
所以重心的轨迹方程为 x^2/(16/9)-y^2=1 (y ≠ 0) .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.