当前位置: > 数学归纳法证明(1+2+3+...+n)(1+1/2+1/3+......+1/n)>=n^2+n-1...
题目
数学归纳法证明(1+2+3+...+n)(1+1/2+1/3+......+1/n)>=n^2+n-1
>=是大于等于
^2是平方
还有条件:n为大于2的正整数
qianyuan629 - 高级经理 六级:
是平方不是立方,要证大于等于不是等于

提问时间:2020-07-13

答案
(1).当N=3时,左边=(1+2+3)*(1+1/2+1/3)=11 右边=3^2+3-1=11 左边=右边,原式成立 (2)设当N=K时原式成立,有(1+2+3+……+K)(1+1/2+1/3+……+1/K)≥K^2+K-1 当=k+1时(1+2+3+...+k+k+1)(1+1/2+1/3+.+1/k+1/(k+1))=(1+2+3+...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.