当前位置: > 已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,...
题目
已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,则双曲线的离心率为 ___ .

提问时间:2020-07-13

答案
设点P(x0,y0),F2(c,0),过P作抛物线准线的垂线,垂足为A,连接PF2,由双曲线定义可得|PF2|=|PF1|-2a
由抛物线的定义可得|PA|=x0+c=2c-2a,∴x0=c-2a
在直角△F1AP中,|F1A|2=(2c)2-(2c-2a)2=8ac-4a2
y02=8ac-4a2
∴8ac-4a2=4c(c-2a)
∴c2-4ac+a2=0
∴e2-4e+1=0
∵e>1
∴e=2+
3

故答案为:2+
3
过P作抛物线准线的垂线,垂足为A,连接PF2,在直角△F1AP中.利用勾股定理,结合双曲线、抛物线的定义,即可求出双曲线的离心率.

圆锥曲线的共同特征.

本题考查双曲线与抛物线的定义,考查双曲线的几何性质,解题的关键是确定关于几何量的等式.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.