当前位置: > 已知函数f(x)= ln(1+ax )-x2 a>0 属于[01] 求f(x)的单调区间...
题目
已知函数f(x)= ln(1+ax )-x2 a>0 属于[01] 求f(x)的单调区间

提问时间:2020-07-13

答案
f’(x)=-2x+(a/(1+ax))=-(2ax^2+2x-a)/(1+ax)
由f’(x)≥0得
(-1-√(1+2a^2))/2a≤x≤(-1+√(1+2a^2))/2a
又因为x∈(0,1〕
所以单调增区间为(0,(-1+√(1+2a^2))/2a〕
单调减区间为〔(-1+√(1+2a^2))/2a,1〕
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.