当前位置: > 若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是(  ) A.0<a<1 B.0<a<12 C.a>2 D.a>1...
题目
若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是(  )
A. 0<a<1
B. 0<a<
1
2

提问时间:2020-07-13

答案
若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则函数y=ax 与y=x+a有两个交点.
当0<a<1时,函数y=ax 与y=x+a只有一个交点,不满足条件.
当a>1时,函数y=ax 与y=x+a有两个交点,如图所示:
故实数a的取值范围是 a>1.
故选D.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.