当前位置: > 如何判断级数√(n+2)-2√(n+1)+√n的收敛性?...
题目
如何判断级数√(n+2)-2√(n+1)+√n的收敛性?
(其中√为开二次方根)

提问时间:2020-07-13

答案
an=√(n+2)-2√(n+1)+√n=[√(n+2)-√(n+1)]-[√(n+1)-√n]=(分子有理化)1/[√(n+2)+√(n+1)]-1/[√(n+1)+√n].可令bn=1/[√(n+1)+√n].===>an=b(n+1)-bn.(n=1,2,3,...).===>a1=b2-b1,a2=b3-b2,a3=b4-b3,...an=b(n+1)-bn.===>∑an=b(n+1)-b1,显然该级数收敛于-b1=1-√2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.