当前位置: > x不等于0时,函数y=e^(-1/x^2),当x=0时,y=0,证明:该函数在x=0时一阶和2阶导数均为0....
题目
x不等于0时,函数y=e^(-1/x^2),当x=0时,y=0,证明:该函数在x=0时一阶和2阶导数均为0.

提问时间:2020-07-13

答案
当x不等于0时对y=e^(-1/x^2)直接求导得y`=(2*x^-3)*e^(-1/x^2).当x等于0时候,用导数的极限定义求:f`(0)=lim(x→0) (f(x)-f(0))/x=(e^(-1/x^2)-0)/x=(e^(-1/x^2))/x=0以上求出了一阶导数f`(0)=0.二阶导数的求法和上...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.