当前位置: > 函数y=2x/lnx的单调递减区间为...
题目
函数y=2x/lnx的单调递减区间为

提问时间:2020-07-13

答案
函数y的定义域为:x>0,且x≠1;
对函数y=2x/lnx求导,得到:
y'=(2lnx-2)/(lnx)^2=2/(lnx)^2*(lnx-1)
令y'<0,得到:
lnx-1<0
即lnx<1

函数y=2x/lnx的单调递减区间为:
(0,1)∪(1,e)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.