当前位置: > 如图1,在Rt△ABC中,∠ACB=90°,点0是BC的中点,D为AB上一动点,延长DO到E,且OE=OD,连接CE. (1)如图2,若D为AB的中点,请判断四边形EDAC的形状,并说明理由; (2)...
题目
如图1,在Rt△ABC中,∠ACB=90°,点0是BC的中点,D为AB上一动点,延长DO到E,且OE=OD,连接CE.

(1)如图2,若D为AB的中点,请判断四边形EDAC的形状,并说明理由;
(2)如图3,若∠A=60°,∠BOD=30°,四边形EDAC是等腰梯形吗?请说明理由;
(3)若AC=15,AB=25,请在图4中作出点D的位置使四边形的EDAC周长最小,请补全图形并求出四边形的EDAC的最小周长.

提问时间:2020-07-13

答案
(1)点0是BC的中点,即OC=OB,又OE=OD,∠EOC=∠DOB,∴△COE≌△BOD.
∴CE=DB,∠E=∠EDB,
∴CE∥AB,而D为AB的中点,
∴CE=AD,由平行四边形判别定理可得EDAC为平行四边形.
(2)由(1)可知CE∥AB,
∴四边形EDAC是梯形,
在Rt△ABC中,∠A=60°,
∴∠B=30°,
又∵∠BOD=30°,
∴∠EDA=60°=∠A,
∴四边形EDAC是等腰梯形.
(3)根据图1、2、3可知,CE与BD的等长的,所以只有当ED是最小的,才会使得四边形EDAC的周长最小,故只有当ED⊥AB时才会令四边形EDAC周长最小.
对于Rt△ABC,由勾股定理求得BC=20,
∴BO=10
∵∠B=∠OCE,∠ODB=∠E=90°,
∴△BOD∽△BAC,
BO
BA
=
OD
AC
,可求得,OD=6,
∴ED=12,
四边形EDAC周长为:15+25+12=52.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.