当前位置: > 集合论证明社A B C是任意集合,证明...
题目
集合论证明社A B C是任意集合,证明
(A-B)—C=(A-C)-B

提问时间:2020-07-13

答案
设x为左边集合种任一元素,则x属于A,且x不属于B,且x不属于C,所以有x属于A且x不属于C且x不属于B,所以x属于右边集合,由x任意性可知,(A-B)-C包含于(A-C)-B.
同理可知右边集合也包含于左边集合.综上,得证.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.