题目
双曲线a平方分之x平方减b平方分之y平方等于1(a>0,b>0)的离心率为根号2,且焦点到渐近线的距离等于1
求双曲线的方程
直线L:y=kx+1与双曲线交于不同的B、C,并且B、C两点都在以双曲线的右顶点A为圆心的同一圆周上,求实数K的值
求双曲线的方程
直线L:y=kx+1与双曲线交于不同的B、C,并且B、C两点都在以双曲线的右顶点A为圆心的同一圆周上,求实数K的值
提问时间:2020-06-29
答案
因为双曲线的离心率为√2,即c/a=√2,所以c^2=2a^2=a^2+b^2,a=b,
又焦点到渐近线的距离为1,即b=1,所以双曲线的标准方程为x^2-y^2=1.
(2)由(1)得,A(1,0),设B(x1,y1),C(x2,y2),则(x1)^2-(y1)^2=1,即(y1)^2=(x1)^2-1,同理(y2)^2=(x2)^2-1.
因为AB=AC,有(x1-1)^2+(y1)^2=(x2-1)^2+(y2)^2,整理得(x1-x2)(x1+x2-1)=0
当x1=x2时,直线l的斜率不存在,此时直线与双曲线无交点,不满足条件,所以x1+x2-1=0,即x1+x2=1.
又将直线方程代入双曲线方程得:(1-k^2)x^2-2kx-2=0,有x1+x2=(2k)/(1-k^2),则有(2k)/(1-k^2)=1,解之得k=-1±√2.
又△=(2k)^2+8(1-k^2)=8-4k^2≥0,且1-k^2≠0,所以k∈[-√2,-1)∪(-1,1)∪(1,√2],所以k=-1+√2.
又焦点到渐近线的距离为1,即b=1,所以双曲线的标准方程为x^2-y^2=1.
(2)由(1)得,A(1,0),设B(x1,y1),C(x2,y2),则(x1)^2-(y1)^2=1,即(y1)^2=(x1)^2-1,同理(y2)^2=(x2)^2-1.
因为AB=AC,有(x1-1)^2+(y1)^2=(x2-1)^2+(y2)^2,整理得(x1-x2)(x1+x2-1)=0
当x1=x2时,直线l的斜率不存在,此时直线与双曲线无交点,不满足条件,所以x1+x2-1=0,即x1+x2=1.
又将直线方程代入双曲线方程得:(1-k^2)x^2-2kx-2=0,有x1+x2=(2k)/(1-k^2),则有(2k)/(1-k^2)=1,解之得k=-1±√2.
又△=(2k)^2+8(1-k^2)=8-4k^2≥0,且1-k^2≠0,所以k∈[-√2,-1)∪(-1,1)∪(1,√2],所以k=-1+√2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一个重6N,边长为10CM的正方体木块放进水槽中,加5CM的水,发现木块仍沉水底,求木块的浮力
- 2因式分解 4(m+2n)的平方-9(2n-m)的平方
- 3求完全立方公式和立方和立方差公式
- 4已知数列an,bn为等差数列,An,Bn表示数列an,bn的前n项和,若a1=60,b1=40,A100+B100=0,求a100+b100
- 5高一数学如何证明三角形内顶点重心以及顶点所对的边的中点三点共线
- 6关于空间四边形的高二数学题
- 7用关联词把两个句子合并成一个句子
- 8acm The Least Palindromic Number
- 9求证:一个两位数于把他的数字位置对调形成的数的差能被9整除.
- 10√{3+√[5-√(13+√48)]} 除以√6+√2 化简 (原来是分数形式,但是不会打分数线所以改成除以.
热门考点