题目
设函数f(x)=4x平方+x+2,曲线y=f(x)在点p(0,2)处切线的斜率为-12,求
1.a的值
2.函数f(x)在区间【-3,2】的最大值和最小值
1.a的值
2.函数f(x)在区间【-3,2】的最大值和最小值
提问时间:2020-06-28
答案
因为点p(0,2)处切线的斜率为-12 ,设y=-12x+b 将(0,2)代入 推出b=2 ,所以y=-12x+2;
斜率a=-12.
(2)由f(x)=4x平方+x+2,可求出顶点坐标(-1/8,31/16)
当x=-3时 f(x)=35
当x=2时 f(x)=20
由于-3
斜率a=-12.
(2)由f(x)=4x平方+x+2,可求出顶点坐标(-1/8,31/16)
当x=-3时 f(x)=35
当x=2时 f(x)=20
由于-3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点