题目
设F1,F2是椭圆C1:x平方/6+y平方/2=1的焦点,P是双曲线C2:x平方/3-y平方=1与C1的一个交点,求向量PF1*
向量PF2/绝对值向量PF1*绝对值向量PF2 的值
向量PF2/绝对值向量PF1*绝对值向量PF2 的值
提问时间:2020-06-28
答案
题中的F1、F2是指焦点吧?!
由于题中椭圆与双曲线都关于原点成中心对称,关于x轴和y轴成轴对称,所以不妨假设点P是椭圆与双曲线右支的交点,
椭圆C1中,易知焦点在x轴上,a1=√6,c1=2;双曲线C2中,知焦点在x轴上,a2=√3,c2=2
则可知椭圆C1与双曲线C2焦点相同,且焦距|F1F2|=4
且不妨设F1、F2分别是左、右焦点
所以分别可由椭圆和双曲线的定义得:
|PF1|-|PF2|=2√3,|PF1|+|PF2|=2√6
解得|PF1|=√6+√3,|PF2|=√6-√3
则在△PF1F2中,由余弦定理可得:
cos∠F1PF2=(|PF1|²+|PF2|²-|F1F2|)/(2|PF1|*|PF2|)
=(9+6√2+9-6√2-16)/(2*3)
=1/3
又由向量数量积的定义可得:
向量PF1*向量PF2=|向量PF1|*|向量PF2|*cos∠F1PF2
则向量PF1*向量PF2/|向量PF1|*|向量PF2|=cos∠F1PF2=1/3
由于题中椭圆与双曲线都关于原点成中心对称,关于x轴和y轴成轴对称,所以不妨假设点P是椭圆与双曲线右支的交点,
椭圆C1中,易知焦点在x轴上,a1=√6,c1=2;双曲线C2中,知焦点在x轴上,a2=√3,c2=2
则可知椭圆C1与双曲线C2焦点相同,且焦距|F1F2|=4
且不妨设F1、F2分别是左、右焦点
所以分别可由椭圆和双曲线的定义得:
|PF1|-|PF2|=2√3,|PF1|+|PF2|=2√6
解得|PF1|=√6+√3,|PF2|=√6-√3
则在△PF1F2中,由余弦定理可得:
cos∠F1PF2=(|PF1|²+|PF2|²-|F1F2|)/(2|PF1|*|PF2|)
=(9+6√2+9-6√2-16)/(2*3)
=1/3
又由向量数量积的定义可得:
向量PF1*向量PF2=|向量PF1|*|向量PF2|*cos∠F1PF2
则向量PF1*向量PF2/|向量PF1|*|向量PF2|=cos∠F1PF2=1/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1设n属于N,n>1,求证logn (n+1)>logn+1 (n+2)
- 21mm方等于多少cm^2
- 3以《我是谁》写一篇800字作文
- 4如果一面靠墙三面用篱笆围,篱笆总长60厘米,当宽是长的几分之几时,围成的长方形的面积最大
- 5长度为一个字节的二进制整数若采用补码表示,则由5个一和三个零组成,则可表示的最小十进制整数为-113
- 6五年级19课小练笔.就是写我有一个严厉的爸爸和一个慈祥的母亲,围绕一件事来写
- 7Amy took some photos at the zoo last week?怎么改否定句?
- 8一张方桌有一个桌面和四条腿组成,如果1立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木
- 9就画线部分提问 his aunt is a nurse (划线是a nurse)
- 10111分之93 和3又24分之18 化为最简分数
热门考点