当前位置: > 椭圆X2/2+Y2=1与斜率为1的直线L交于A,B两点,F是左焦点,求三角形ABF1的面积的最大值...
题目
椭圆X2/2+Y2=1与斜率为1的直线L交于A,B两点,F是左焦点,求三角形ABF1的面积的最大值

提问时间:2020-06-27

答案
设直线l的方程为y=x+b,它与椭圆的交点A(X1,Y1) B(X2,Y2),则三角形ABF的面积为1/2|b||y1-y2|
将x=y-b代入椭圆方程得3/2^2-by+b^2/2-1=0,|y1-y2|=根号下(y1+y2)^2-4y1y2=根号下4-14/9b^2
三角形ABF的面积=1/2|b|根号下4-14/9b^2=1/2根号下4b^-14/9b^4,令b^2=t,易知0=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.