当前位置: > 已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(1/2)=0,则不等式f(log4x)>0...
题目
已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(1/2)=0,则不等式f(log4x)>0
已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(1/2)=0,则不等式f(log4x)>0的解集?

提问时间:2020-06-27

答案
因为f(x)为偶函数且在[0,+无穷)上是增函数,故在(-无穷,0]上是减函数.
又f(0.5)=0,故f(-0.5)=0.
所以在(-无穷,-0.5)和(0.5,+无穷)上,f(x)>0.
所以有如下不等式:
log4X0.5.(真数X>0)
解之,得00的解集是:
(0,0.5),(2,+无穷)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.