当前位置: > 设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列...
题目
设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列
设BN=1-SN,是否存在A1,使数列{BN}为等差数列?若存在,求出A1,若不存在说明理由

提问时间:2020-06-26

答案
由三者成等差数列知a(n+1)-Sn=Sn+a1,即2*Sn=a(n+1)-a1
由bn=1-Sn知,b(n+1)-bn=1-S(n+1)-1+Sn=Sn-S(n+1)=0.5*[a(n+1)-a1-a(n+2)+a1]=0.5*[a(n+1)-a(n+2)]很明显如果数列{an}是等差数列,则{bn}就是等差数列.
若{an}为等差数列则2*Sn=a1+a(n)=a(n+1)-a1可推出,2a1=a(n+1)-a(n)恒成立,故不论a1取什么,均为等差数列
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.