当前位置: > 设函数f(x)=∫lt(t-x)ldt(0...
题目
设函数f(x)=∫lt(t-x)ldt(0这是一道

提问时间:2020-06-25

答案
f(x)=∫(0,1)lt(t-x)ldt,x∈(0,1)
=∫(0,x)lt(t-x)ldt+∫(x,1)lt(t-x)ldt
=∫(0,x)t(x-t)dt+∫(x,1)t(t-x)dt
=x∫(0,x)tdt-∫(0,x)t^2dt+∫(x,1)t^2dt-x∫(x,1)tdt
求导f'(x)=∫(0,x)tdt+x^2-x^2-x^2-∫(x,1)tdt+x^2=∫(0,x)tdt-∫(x,1)tdt=x^2-1/2=(x-1/√2)(x+1/√2)
由f'(x)<0,得f(x)单减区间(0,1/√2),由f'(x)>0得f(x)单增区间(1/√2,1),
且f(x)在x=1/√2处取得极小值,代入得f(1/√2)=(1/3)(1-1/√2)
f"(x)=2x>0那么知f(x)凹区间为(0,1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.