当前位置: > 设函数f(x)=ln(1+x)-2x/(x+m),它x=2处的切线斜率1/12,证明x>0时,f(x)>0...
题目
设函数f(x)=ln(1+x)-2x/(x+m),它x=2处的切线斜率1/12,证明x>0时,f(x)>0

提问时间:2020-06-25

答案
f(x)定义域是x>-1且x不等于-m求f(x)的导数,f'(x)=1/(1+x)-2m/(x+m)^2因x=2,f'(x)=1/12,得m=2所以f'(x)=1/(1+x)-4/(x+2)^2=x^2/(x+1)(x+2)^2在x>0时,f'(x)>0,所以f(x)在x>0时递增当x=0时,f(x)=0,因此x>0时,f(x)>0...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.