当前位置: > 若 f(x)为奇函数,又f(x+1) 为偶函数,则f(1)+f(3)+...f(19)=f(2)+f(4)+...f(20)...
题目
若 f(x)为奇函数,又f(x+1) 为偶函数,则f(1)+f(3)+...f(19)=f(2)+f(4)+...f(20)

提问时间:2020-06-25

答案
f(x+1)为偶函数,则f(-x+1)=f(x+1),即f(x)=f(2-x),(换元可得)又f(x)为奇函数,则f(-x)+f(x)=0,f(0)=0,f(x)=f(2-x)=-f(x-2)=-f(4-x)=f(x-4),所以f(x)是周期为4的周期函数.所以 f(1)+f(3)=f(1)+f(4-1)=f(1)+f(-1)=0,f(...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.