当前位置: > 利用单调有界必有极限准则证明下列数列的极限存在并求极限,...
题目
利用单调有界必有极限准则证明下列数列的极限存在并求极限,
x1=10,x(n+1)=根号(6+xn)n=1,2,3,4.

提问时间:2020-06-25

答案
x(n+1)=√(6+xn)
1.x1-x2=10-4>0 现设x(n-1)>xn
xn-x(n+1)=√(6+x(n-1))-√(6+xn)
=(x(n-1)-xn)/√(6+xn)+√(6+x(n-1))>0
由数学归纳法,xn>x(n+1),数列单减
2,因为x1>3,设xn>3,x(n+1)=√(6+xn)>√9=3 故xn有下界3
数列单减有下界,极限存在,设为a
在x(n+1)=√(6+xn)两边取极限得:a^2=6+a,解得a=3,a=-2(舍去)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.