题目
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,点F为椭圆的右焦点,点A、B分别为椭圆的左右顶点,
点M为椭圆的上顶点,且满足向量MF乘以向量FB=√2-1,(1)求椭圆C的方程
(2)是否存在直线L 当直线L交椭圆与PQ两点时 使点F恰为△PQM的垂心? 若存在,求出直线方程
点M为椭圆的上顶点,且满足向量MF乘以向量FB=√2-1,(1)求椭圆C的方程
(2)是否存在直线L 当直线L交椭圆与PQ两点时 使点F恰为△PQM的垂心? 若存在,求出直线方程
提问时间:2020-06-25
答案
(1)
e=c/a=根号2/2
a^2=2c^2
m(0,b) f(c,0) b(a,0)
mf=(c,-b)
fb=(a-c,0)
mf.fb=ca-c^2=√2-1
c=1
a^2=2
c^2=a^2-b^2=1
b^2=1
故椭圆的方程为 x^2/2+y^2=1
(2)
假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,
则设P(x1,y1),Q(x2,y2),
∵M(0,1),F(1,0),故kPQ=1,
于是设直线l为y=x+m,由
y=x+m
x^2+2y^2=2
得3x^2+4mx+2m2-2=0.
∴MP→•FQ→=0=x1(x2-1)+y2(y1-1),
由yi=xi+m(i=1,2)得x1(x2-1)+(x2+m)(x1+m-1)=0,即2x1x2+(x1+x2)(m-1)+m2
-m=0,
由一元二次方程根与系数的关系得
2•2m2-23-4m3(m-1)+m2-m=0.
解得m=-43或m=1,经检验只有m=-43符合条件,则直线l的方程为y=x-43.
e=c/a=根号2/2
a^2=2c^2
m(0,b) f(c,0) b(a,0)
mf=(c,-b)
fb=(a-c,0)
mf.fb=ca-c^2=√2-1
c=1
a^2=2
c^2=a^2-b^2=1
b^2=1
故椭圆的方程为 x^2/2+y^2=1
(2)
假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,
则设P(x1,y1),Q(x2,y2),
∵M(0,1),F(1,0),故kPQ=1,
于是设直线l为y=x+m,由
y=x+m
x^2+2y^2=2
得3x^2+4mx+2m2-2=0.
∴MP→•FQ→=0=x1(x2-1)+y2(y1-1),
由yi=xi+m(i=1,2)得x1(x2-1)+(x2+m)(x1+m-1)=0,即2x1x2+(x1+x2)(m-1)+m2
-m=0,
由一元二次方程根与系数的关系得
2•2m2-23-4m3(m-1)+m2-m=0.
解得m=-43或m=1,经检验只有m=-43符合条件,则直线l的方程为y=x-43.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1大姐姐,大哥哥我有俩道题5.一种自行车的车轮直径是66厘米,它的周长是多少?小强
- 2某导体的电阻为20Ω当两端电压为12V时,在30S内该导体消耗的电能是 _____J
- 3以下物质是的用途是利用了其物理性质的是活性炭除去冰箱的异味
- 4I was not a little tired怎么翻译
- 5I hope she( )(be) the best 括号里填什么?
- 616分之15-(12分之 7+6分之1)*2分之1
- 7SIN的三次方公式
- 8已知不等式组A+B0.的解为-3
- 9青蛙一个小时吃多少害虫
- 105、下面是我国2005年公布的个人收入所得税征收标准.个人月收入1600元以下的不征税.月收入超过1600元,超过部分按下面的标准征税.
热门考点