当前位置: > 有实数x,-x,|x|,根号(x的平方),负三次方根(x的三次方)所组成的集合,最多含有元素的个数为...
题目
有实数x,-x,|x|,根号(x的平方),负三次方根(x的三次方)所组成的集合,最多含有元素的个数为
2个,为什么,我怎么觉得他们的元素只有0一个,我对这个问题不太清楚

提问时间:2020-06-25

答案
当x>0时,x=|x|=√x²
-x=负三次方根(x的三次方)
这时,无素只有二个
当x<0时,-x=|x|=√x²=负三次方根(x的三次方)
x
这时,元素也是有二个
当x=0时,x=-x=|x|=√x²=负三次方根(x的三次方)
这时,元素只有一个
所以含元素最多的个数是2个
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.