当前位置: > 怎样用反证法证明根号2是无理数?...
题目
怎样用反证法证明根号2是无理数?

提问时间:2020-06-25

答案
首先要知道任何有理数都可以写成a/b的形式,其中a和b都是整数.
对于这题用反证法:
假设根号2是有理数,那么假设根号2=m/n(m,n都是正整数,且m,n互质,如果不互质,那么我们还可以约分,就没有意义了)
根号2=m/n 两边平方化简 得 2n^2=m^2
于是m一定要是偶数,可以设m=2s 其中s是正整数
那么2n^2=4s^2 化简n^2=2s^2
于是n也一定要是偶数,于是 m n 都是偶数 这就和假设m n互质相矛盾了,所以假设不成立,即根号2是无理数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.